Prediction of ozone concentration in ambient air using multivariate methods.
نویسندگان
چکیده
Multivariate statistical methods including pattern recognition (Principal Component Analysis--PCA) and modeling (Multiple Linear Regression--MLR, Partial Least Squares--PLS, as well as Principal Component Regression--PCR) methods were carried out to evaluate the state of ambient air in Miskolc (second largest city in Hungary). Samples were taken from near the ground at a place with an extremely heavy traffic. Although PCA is not able to determine the significance of variables, it can uncover their similarities and classify the cases. PCA revealed that it is worth to separate day and night data because different factors influence the ozone concentrations during all day. Ozone concentration was modeled by MLR and PCR with the same efficiency if the conditions of meteorological parameters were not changed (i.e. morning and afternoon). Without night data, PCR and PLS suggest that the main process is not a photochemical but a chemical one.
منابع مشابه
Status and prediction of ozone as an air pollutant in Ahvaz City, Iran
In the present study, air quality analyses for ozone (O3) were conducted in Ahvaz, a city in the south of Iran. The measurements were taken from 2009 through 2010 in two different locations to prepare average data in the city. Relations between the air pollutant and some meteorological parameters were calculated statistically using the daily average data. The wind data (velocity, direction), re...
متن کاملStatus and preparation of prediction models for ozone as an air pollutant in Shiraz, Iran
In the present study, air quality analyses for ozone (O3) were conducted in Shiraz, a city in the south of Iran. The measurements were taken from 2011 through 2012 in two different locations to prepare average data in the city. The average concentrations were calculated for every 24 hours, each month and each season. Results showed that the highest concentration of ozone occurs generally in the...
متن کاملShort-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کاملShort-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network
Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...
متن کاملStatus and preparation of prediction models for ozone as an air pollutant in Shiraz, Iran
In the present study, air quality analyses for ozone (O3) were conducted in Shiraz, a city in the south of Iran. The measurements were taken from 2011 through 2012 in two different locations to prepare average data in the city. The average concentrations were calculated for every 24 hours, each month and each season. Results showed that the highest concentration of ozone occurs generally in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 57 8 شماره
صفحات -
تاریخ انتشار 2004